欢迎访问24帧网!

Multivariable Calculus 9th Edition by James Stewart solution manual

分享 时间: 加入收藏 我要投稿 点赞

46. Let () = cos and () =  2 . Then ( ◦ )() = (()) = (cos) = (cos) 2 = cos 2  = ().
47. Let () =
3
√  and () =

1 +  . Then ( ◦ )() = (()) = 

3
√  
=
3
√ 
1 +
3
√  = ().
c ° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
40
¤
CHAPTER 1 FUNCTIONSAND MODELS
48. Let () =

1 + 
and () =
3
√ . Then ( ◦ )() = (()) =  

1 + 

=
3


1 + 
= ().
49. Let () =  2 and () = sec tan. Then ( ◦ )() = (()) = ( 2 ) = sec( 2 ) tan( 2 ) = ().
50. Let () =
√  and  () = √ 1 + . Then ( ◦ )() = (()) =   √  
=

1 +
√  = ().
51. Let () =
√ , () =  − 1, and () = √ . Then
( ◦  ◦ )() = ((())) = 


 √


= 
 √
 − 1

=
 √
 − 1 = ().
52. Let () = ||, () = 2 + , and () =
8
√ . Then
( ◦  ◦ )() = ((())) = ((||)) =  (2 + ||) =
8
 2 + || = ().
53. Let () = cos, () = sin, and () =  2 . Then
( ◦  ◦ )() = ((())) = ((cos)) = (sin(cos)) = [sin(cos)] 2 = sin 2 (cos) = ().
54. Let () = tan, () =
√  + 1, and () = cos. Then
( ◦  ◦ )() =  ((())) =  ((tan)) =  √ tan + 1  = cos √ tan + 1  = ().
55. (a) ((3)) = (4) = 6. (b) ((2)) = (1) = 5.
(c) ( ◦ )(5) = ((5)) = (3) = 5. (d) ( ◦ )(5) = ((5)) = (2) = 3.
56. (a) (((2))) = ((3)) = (4) = 1. (b) ( ◦  ◦ )(1) = (((1))) = ((3)) = (5) = 2.
(c) ( ◦  ◦ )(1) = (((1))) = ((5)) = (2) = 1. (d) ( ◦  ◦ )(3) = (((3))) = ((4)) = (6) = 2.
57. (a) (2) = 5, because the point (25) is on the graph of . Thus, ((2)) = (5) = 4, because the point (54) is on the
graph of .
(b) ((0)) = (0) = 3
(c) ( ◦ )(0) = ((0)) = (3) = 0
(d) ( ◦ )(6) = ((6)) = (6). This value is not defined, because there is no point on the graph of  that has
­coordinate 6.
(e) ( ◦ )(−2) = ((−2)) = (1) = 4
(f) ( ◦ )(4) = ((4)) = (2) = −2
58. To find a particular value of (()), say for  = 0, we note from the graph that (0) ≈ 28 and (28) ≈ −05. Thus,
((0)) ≈ (28) ≈ −05. The other values listed in the table were obtained in a similar fashion.
 () (())
−5 −02 −4
−4 12 −33
−3 22 −17
−2 28 −05
−1 3 −02
 () (())
0 28 −05
1 22 −17
2 12 −33
3 −02 −4
4 −19 −22
5 −41 19
c ° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
SECTION 1.3 NEW FUNCTIONSFROM OLD FUNCTIONS
¤
41
59. (a) Using the relationship distance = rate · time with the radius  as the distance, we have () = 60.
(b)  =  2 ⇒ ( ◦ )() = (()) = (60) 2 = 3600 2 . This formula gives us the extent of the rippled area
(in cm 2 ) at any time .
60. (a) The radius  of the balloon is increasing at a rate of 2 cms, so () = (2 cms)( s) = 2 (in cm).
(b) Using  =
4
3 
3 , we get ( ◦ )() =  (()) =  (2) = 4
3 (2)
3
=
32
3
 3 .
The result,  =
32
3
 3 , gives the volume of the balloon (in cm 3 ) as a function of time (in s).
61. (a) From the figure, we have a right triangle with legs 6 and , and hypotenuse .
By the Pythagorean Theorem,  2 + 6 2 =  2 ⇒  = () =

精选图文

221381
领取福利

微信扫码领取福利

微信扫码分享